Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Indian J Dermatol Venereol Leprol ; 88(4): 452-463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35138057

RESUMO

Ras/mitogen-activated protein kinase pathway dysregulation results in a group of disorders, collectively termed as RASopathies. Neurofibromatosis type 1, Noonan syndrome, Noonan syndrome with multiple lentigines, Noonan syndrome/loose anagen hair, Legius syndrome, Costello syndrome, cardio-facio-cutaneous syndrome and capillary malformation-arteriovenous malformation are the well-recognized RASopathies. These are characterized by multi-organ tumours and hamartomas. Some other features in common are facial dysmorphism, skeletal abnormalities, congenital heart disease, neurocognitive abnormalities and risk of various solid-organ and haematological malignancies. Some of the RASopathies are heterogeneous, caused by several gene mutations resulting in variations in phenotypes and severity ranging from mild to fatal. Significant phenotypic overlaps among different disorders, often makes it difficult to pinpoint a clinical diagnosis. Specific cutaneous manifestations are present in some of the RASopathies and are often the earliest clinical signs/symptoms. Hence, dermatologists contribute significantly as primary care physicians by identifying disorder-specific cutaneous lesions. However, diagnostic work-up and management of these disorders are often multidisciplinary. Confirmation of diagnosis is possible only by genetic mapping in each case. Genetic counseling of the patients and the affected families is an important component of the management. The aim of this review is description of cutaneous manifestations of RASopathies in the background of multi-system involvement to enable dermatologists a comprehensive and logical approach to work up and diagnose such patients in the absence of facility for specific molecular testing.


Assuntos
Síndrome de Costello , Displasia Ectodérmica , Síndrome de Noonan , Síndrome de Costello/genética , Dermatologistas , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Humanos , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Proteínas ras/genética , Proteínas ras/metabolismo
2.
Immunity ; 26(5): 605-16, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17462920

RESUMO

Adaptive immune responses by dendritic cells (DCs) are critically controlled by Toll-like receptor (TLR) function. Little is known about modulation of TLR-specific signaling by other pathogen receptors. Here, we have identified a molecular signaling pathway induced by the C-type lectin DC-SIGN that modulates TLR signaling at the level of the transcription factor NF-kappaB. We demonstrated that pathogens trigger DC-SIGN on human DCs to activate the serine and threonine kinase Raf-1, which subsequently leads to acetylation of the NF-kappaB subunit p65, but only after TLR-induced activation of NF-kappaB. Acetylation of p65 both prolonged and increased IL10 transcription to enhance anti-inflammatory cytokine responses. We demonstrated that different pathogens such as Mycobacterium tuberculosis, M. leprae, Candida albicans, measles virus, and human immunodeficiency virus-1 interacted with DC-SIGN to activate the Raf-1-acetylation-dependent signaling pathway to modulate signaling by different TLRs. Thus, this pathway is involved in regulation of adaptive immunity by DCs to bacterial, fungal, and viral pathogens.


Assuntos
Moléculas de Adesão Celular/metabolismo , Lectinas Tipo C/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Acetilação , Motivos de Aminoácidos , Moléculas de Adesão Celular/genética , Células Cultivadas , DNA/metabolismo , Ativação Enzimática , Humanos , Interleucina-10/biossíntese , Interleucina-10/genética , Lectinas Tipo C/genética , Fosfosserina/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Superfície Celular/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 5 Toll-Like/metabolismo , Transcrição Gênica/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA